Skip to main content
Skip to navigation

New Discovery in Genetic Research Could Lead to Treatments for Mitochondrial Diseases

Based on a study from the University of Missouri

DNA

Royalty-free image from Pixabay.com.

COLUMBIA, Mo. – A new study published in the Proceedings of the National Academy of Sciences (PNAS) from the University of Missouri has succeeded in creating embryos with “heteroplasmy,” or the presence of both maternal and paternal mitochondrial DNA. This new innovation will allow scientists to study treatments for mitochondrial diseases in humans as well as the significance of mitochondrial inheritance for livestock.

When parents pass along their genes to their children, most of the DNA from the mother and father is evenly divided. However, children only receive one type of DNA, called mitochondrial DNA, from their mothers, while the fathers’ mitochondrial DNA is naturally removed from the embryos. Peter Sutovsky, a professor of reproductive physiology at Mizzou and lead author Won-Hee Song, a doctoral candidate in the Mizzou College of Agriculture, Food and Natural Resources, have found a way to prevent this paternal mitochondrial DNA removal process in pig embryos, thus creating embryos with “heteroplasmy.”

“As many as 4,000 children are born in the U.S. every year with some form of mitochondrial disease, which can include poor growth, loss of muscle coordination, learning disabilities and heart disease,” Sutovsky said. “Some scientists believe some of these diseases may be caused by heteroplasmy, or cells possessing both maternal and paternal mitochondrial DNA. We have succeeded in creating this condition of heteroplasmy within pig embryos, which will allow scientists to further study whether paternal heteroplasmy could cause mitochondrial diseases in humans.”

Read more: http://www.stonehearthnewsletters.com/new-discovery-in-genetic-research-could-lead-to-treatments-for-mitochondrial-diseases/mitochondrial-disease/